Two Years of Bayesian Bandits for E-Commerce

Data Philly • April 2, 2018 • @AustinRochford

About Monetate

  • Founded 2008, web optimization and personalization SaaS
  • Observed 5B impressions and $4.1B in revenue during Cyber Week 2017

Nontechnical marketer-focused

About this talk

Outline

  • Web optimization
    • A/B testing
    • Multi-armed bandits
  • Bayesian bandits
    • Thompson sampling
  • Nonstationarity
    • Kalman filters
    • Decayed posteriors
  • Bandit bias
    • Inverse propensity weighting
  • Contextual bandits?

Web Optimization

A/B testing

A/B testing machinery

Ronald Fisher
Abraham Wald

Multi-armed bandits

Multi-armed bandit systems

Bayesian Bandits

Beta-binomial model

$$ \begin{align*} x_A, x_B & = \textrm{number of rewards from users shown variant } A, B \\ x_A & \sim \textrm{Binomial}(n_A, r_A) \\ x_B & \sim \textrm{Binomial}(n_B, r_B) \\ r_A, r_B & \sim \textrm{Beta}(1, 1) \end{align*} $$

$$ \begin{align*} r_A\ |\ n_A, x_A & \sim \textrm{Beta}(x_A + 1, n_A - x_A + 1) \\ r_B\ |\ n_B, x_B & \sim \textrm{Beta}(x_B + 1, n_B - x_B + 1) \end{align*} $$

Thompson sampling

Thompson sampling randomizes user/variant assignment according to the probabilty that each variant maximizes the posterior expected reward.

The probability that a user is assigned variant A is

$$ \begin{align*} P(r_A > r_B\ |\ \mathcal{D}) & = \int_0^1 P(r_A > r\ |\ \mathcal{D})\ \pi_B(r\ |\ \mathcal{D})\ dr \\ & = \int_0^1 \left(\int_r^1 \pi_A(s\ |\ \mathcal{D})\ ds\right)\ \pi_B(r\ |\ \mathcal{D})\ dr \\ & \propto \int_0^1 \left(\int_r^1 s^{\alpha_A - 1} (1 - s)^{\beta_A - 1}\ ds\right) r^{\alpha_B - 1} (1 - r)^{\beta_B - 1}\ dr \end{align*} $$

In [7]:
fig
Out[7]:
In [10]:
fig
Out[10]:
In [11]:
(a_samples > b_samples).mean()
Out[11]:
0.24299999999999999

Thompson sampling, redeemed

  1. Sample $\hat{r}_A \sim r_A\ |\ n_A, x_A$ and $\hat{r}_B \sim r_B\ |\ n_B, x_B$.
  2. Assign the user variant A if $\hat{r}_A > \hat{r}_B$, otherwise assign them variant B.

Simulating a bandit

In [12]:
class BetaBinomial:
    def __init__(self, a0=1., b0=1.):
        self.a = a0
        self.b = b0
        
    def sample(self):
        return sp.stats.beta.rvs(self.a, self.b)
    
    def update(self, n, x):
        self.a += x
        self.b += n - x
In [13]:
class Bandit:
    def __init__(self, a_post, b_post):
        self.a_post = a_post
        self.b_post = b_post
        
    def assign(self):
        return 1 * (self.a_post.sample() < self.b_post.sample())
    
    def update(self, arm, reward):
        arm_post = self.a_post if arm == 0 else self.b_post
        arm_post.update(1, reward)
In [15]:
A_RATE, B_RATE = 0.05, 0.1
N = 1000

rewards_gen = generate_rewards(A_RATE, B_RATE, N)
In [16]:
bandit = Bandit(BetaBinomial(), BetaBinomial())
arms = np.empty(N, dtype=np.int64)
rewards = np.empty(N)

for t, arm_rewards in tqdm(enumerate(rewards_gen), total=N):
    arms[t] = bandit.assign()
    rewards[t] = arm_rewards[arms[t]]

    bandit.update(arms[t], rewards[t])
100%|██████████| 1000/1000 [00:00<00:00, 3333.85it/s]
In [18]:
fig
Out[18]: